Freshwater ecosystems are one of the most important and diverse natural systems in the world. These ecosystems are made up of rivers, lakes, wetlands, and other bodies of freshwater that support an incredible array of plant and animal life. Freshwater ecosystems are not only home to a wide range of aquatic species, but they also provide vital resources to humans such as water for drinking, agriculture, and industry. These ecosystems are also incredibly sensitive to changes in their environment, making them an important indicator of the health of the planet. In this article, we will explore the characteristics of freshwater ecosystems, the threats they face, and the important role they play in sustaining life on Earth.

Which Of The Following Statements Regarding Freshwater Ecosystems Is True

As an AI language model, I don’t know the context of your question and have no idea which statements you’re referring to. Can you please provide me with some more context or information?


Freshwater ecosystem

Part of Earth’s aquatic ecosystems

Freshwater ecosystem

Freshwater ecosystems are a subset of Earth’s aquatic ecosystems. They include lakes, ponds, rivers, streams, springs, bogs, and wetlands. They can be contrasted with marine ecosystems, which have a larger salt content. Freshwater habitats can be classified by different factors, including temperature, light penetration, nutrients, and vegetation. There are three basic types of freshwater ecosystems: Lentic (slow moving water, including pools, ponds, and lakes), lotic (faster moving water, for example streams and rivers) and wetlands (areas where the soil is saturated or inundated for at least part of the time). Freshwater ecosystems contain 41% of the world’s known fish species.

Freshwater ecosystems have undergone substantial transformations over time, which has impacted various characteristics of the ecosystems. Original attempts to understand and monitor freshwater ecosystems were spurred on by threats to human health (for example cholera outbreaks due to sewage contamination). Early monitoring focused on chemical indicators, then bacteria, and finally algae, fungi and protozoa. A new type of monitoring involves quantifying differing groups of organisms (macroinvertebrates, macrophytes and fish) and measuring the stream conditions associated with them.

Threats to freshwater biodiversity include overexploitation, water pollution, flow modification, destruction or degradation of habitat, and invasion by exotic species. Climate change is putting further pressure on these ecosystems because water temperatures have already increased by about 1 °C, and there have been significant declines in ice coverage which have caused subsequent ecosystem stresses.


There are three basic types of freshwater ecosystems: Lentic (slow moving water, including pools, ponds, and lakes), lotic (faster moving water, for example streams and rivers) and wetlands (areas where the soil is saturated or inundated for at least part of the time). Limnology (and its branch freshwater biology) is a study about freshwater ecosystems.

Lentic ecosystems

This section is an excerpt from Lake ecosystem.

The three primary zones of a lake

A lake ecosystem or lacustrine ecosystem includes biotic (living) plants, animals and micro-organisms, as well as abiotic (non-living) physical and chemical interactions. Lake ecosystems are a prime example of lentic ecosystems (lentic refers to stationary or relatively still freshwater, from the Latin lentus, which means “sluggish”), which include ponds, lakes and wetlands, and much of this article applies to lentic ecosystems in general. Lentic ecosystems can be compared with lotic ecosystems, which involve flowing terrestrial waters such as rivers and streams. Together, these two ecosystems are examples of freshwater ecosystems.

Lentic systems are diverse, ranging from a small, temporary rainwater pool a few inches deep to Lake Baikal, which has a maximum depth of 1642 m. The general distinction between pools/ponds and lakes is vague, but Brown states that ponds and pools have their entire bottom surfaces exposed to light, while lakes do not. In addition, some lakes become seasonally stratified. Ponds and pools have two regions: the pelagic open water zone, and the benthic zone, which comprises the bottom and shore regions. Since lakes have deep bottom regions not exposed to light, these systems have an additional zone, the profundal. These three areas can have very different abiotic conditions and, hence, host species that are specifically adapted to live there.

Lotic ecosystems

This section is an excerpt from River ecosystem.

This stream operating together with its environment can be thought of as forming a river ecosystem.

River ecosystems are flowing waters that drain the landscape, and include the biotic (living) interactions amongst plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions of its many parts. River ecosystems are part of larger watershed networks or catchments, where smaller headwater streams drain into mid-size streams, which progressively drain into larger river networks. The major zones in river ecosystems are determined by the river bed’s gradient or by the velocity of the current. Faster moving turbulent water typically contains greater concentrations of dissolved oxygen, which supports greater biodiversity than the slow-moving water of pools. These distinctions form the basis for the division of rivers into upland and lowland rivers.

The food base of streams within riparian forests is mostly derived from the trees, but wider streams and those that lack a canopy derive the majority of their food base from algae. Anadromous fish are also an important source of nutrients. Environmental threats to rivers include loss of water, dams, chemical pollution and introduced species. A dam produces negative effects that continue down the watershed. The most important negative effects are the reduction of spring flooding, which damages wetlands, and the retention of sediment, which leads to the loss of deltaic wetlands.

River ecosystems are prime examples of lotic ecosystems. Lotic refers to flowing water, from the Latin lotus, meaning washed. Lotic waters range from springs only a few centimeters wide to major rivers kilometers in width. Much of this article applies to lotic ecosystems in general, including related lotic systems such as streams and springs. Lotic ecosystems can be contrasted with lentic ecosystems, which involve relatively still terrestrial waters such as lakes, ponds, and wetlands. Together, these two ecosystems form the more general study area of freshwater or aquatic ecology.


This section is an excerpt from Wetland.

Wetlands, or simply a wetland, is a distinct ecosystem that is flooded or saturated by water, either permanently (for years or decades) or seasonally (for weeks or months). Flooding results in oxygen-free (anoxic) processes prevailing, especially in the soils. The primary factor that distinguishes wetlands from terrestrial land forms or water bodies is the characteristic vegetation of aquatic plants, adapted to the unique anoxic hydric soils. Wetlands are considered among the most biologically diverse of all ecosystems, serving as home to a wide range of plant and animal species. Methods for assessing wetland functions, wetland ecological health, and general wetland condition have been developed for many regions of the world. These methods have contributed to wetland conservation partly by raising public awareness of the functions some wetlands provide.

Wetlands occur naturally on every continent. The water in wetlands is either freshwater, brackish or saltwater. The main wetland types are classified based on the dominant plants and/or the source of the water. For example, marshes are wetlands dominated by emergent vegetation such as reeds, cattails and sedges; swamps are ones dominated by woody vegetation such as trees and shrubs (although reed swamps in Europe are dominated by reeds, not trees). Examples of wetlands classified by their sources of water include tidal wetlands (oceanic tides), estuaries (mixed tidal and river waters), floodplains (excess water from overflowed rivers or lakes), springs, seeps and fens (groundwater discharge out onto the surface), and bogs and vernal ponds (rainfall or meltwater). Some wetlands have multiple types of plants and are fed by multiple sources of water, making them difficult to classify. The world’s largest wetlands include the Amazon River basin, the West Siberian Plain, the Pantanal in South America, and the Sundarbans in the Ganges-Brahmaputra delta.

Wetlands contribute a number of functions that benefit people. These are called ecosystem services and include water purification, groundwater replenishment, stabilization of shorelines and storm protection, water storage and flood control, processing of carbon (carbon fixation, decomposition and sequestration), other nutrients and pollutants, and support of plants and animals. Wetlands are reservoirs of biodiversity and provide wetland products. According to the UN Millennium Ecosystem Assessment, wetlands are more affected by environmental degradation than any other ecosystem on Earth. Wetlands can be important sources and sinks of carbon, depending on the specific wetland, and thus will play an important role in climate change and need to be considered in attempts to mitigate climate change. However, some wetlands are a significant source of methane emissions and some are also emitters of nitrous oxide. Constructed wetlands are designed and built to treat municipal and industrial wastewater as well as to divert stormwater runoff. Constructed wetlands may also play a role in water-sensitive urban design.


Further information: Lake ecosystem § Human impacts, River ecosystem § Human impacts, and Ecosystem § Human interactions with ecosystems


Five broad threats to freshwater biodiversity include overexploitation, water pollution, flow modification, destruction or degradation of habitat, and invasion by exotic species. Recent extinction trends can be attributed largely to sedimentation, stream fragmentation, chemical and organic pollutants, dams, and invasive species. Common chemical stresses on freshwater ecosystem health include acidification, eutrophication and copper and pesticide contamination.

Freshwater biodiversity faces many threats. The World Wide Fund for Nature’s Living Planet Index noted an 83% decline in the populations of freshwater vertebrates between 1970 and 2014. These declines continue to outpace contemporaneous declines in marine or terrestrial systems. The causes of these declines are related to:

  1. A rapidly changing climate
  2. Online wildlife trade and invasive species
  3. Infectious disease
  4. Toxic algae blooms
  5. Hydropower damming and fragmenting of half the world’s rivers
  6. Emerging contaminants, such as hormones
  7. Engineered nanomaterials
  8. Microplastic pollution
  9. Light and noise interference
  10. Saltier coastal freshwaters due to sea level rise
  11. Calcium concentrations falling below the needs of some freshwater organisms
  12. The additive—and possibly synergistic—effects of these threats

Extinction of freshwater fauna

Over 123 freshwater fauna species have gone extinct in North America since 1900. Of North American freshwater species, an estimated 48.5% of mussels, 22.8% of gastropods, 32.7% of crayfishes, 25.9% of amphibians, and 21.2% of fish are either endangered or threatened. Extinction rates of many species may increase severely into the next century because of invasive species, loss of keystone species, and species which are already functionally extinct (e.g., species which are not reproducing). Even using conservative estimates, freshwater fish extinction rates in North America are 877 times higher than background extinction rates (1 in 3,000,000 years). Projected extinction rates for freshwater animals are around five times greater than for land animals, and are comparable to the rates for rainforest communities. Given the dire state of freshwater biodiversity, a team of scientists and practitioners from around the globe recently drafted an Emergency Action plan to try and restore freshwater biodiversity.

Current freshwater biomonitoring techniques focus primarily on community structure, but some programs measure functional indicators like biochemical (or biological) oxygen demand, sediment oxygen demand, and dissolved oxygen. Macroinvertebrate community structure is commonly monitored because of the diverse taxonomy, ease of collection, sensitivity to a range of stressors, and overall value to the ecosystem. Additionally, algal community structure (often using diatoms) is measured in biomonitoring programs. Algae are also taxonomically diverse, easily collected, sensitive to a range of stressors, and overall valuable to the ecosystem. Algae grow very quickly and communities may represent fast changes in environmental conditions.

In addition to community structure, responses to freshwater stressors are investigated by experimental studies that measure organism behavioural changes, altered rates of growth, reproduction or mortality. Experimental results on single species under controlled conditions may not always reflect natural conditions and multi-species communities.

The use of reference sites is common when defining the idealized health” of a freshwater ecosystem. Reference sites can be selected spatially by choosing sites with minimal impacts from human disturbance and influence. However, reference conditions may also be established temporally by using preserved indicators such as diatom valves, macrophyte pollen, insect chitin and fish scales can be used to determine conditions prior to large scale human disturbance. These temporal reference conditions are often easier to reconstruct in standing water than moving water because stable sediments can better preserve biological indicator materials.

Climate change

See also: Effects of climate change on the water cycle § Impacts on freshwater ecosystems

The effects of climate change greatly complicate and frequently exacerbate the impacts of other stressors that threaten many fish, invertebrates, phytoplankton, and other organisms. Climate change is increasing the average temperature of water bodies, and worsening other issues such as changes in substrate composition, oxygen concentration, and other system changes that have ripple effects on the biology of the system. Water temperatures have already increased by around 1 °C, and significant declines in ice coverage have caused subsequent ecosystem stresses.

See also

  • iconEcology portal
  • iconWater portal
  • Ecology
  • Freshwater


Wikimedia Commons has media related to Freshwater ecosystems.

  • v
  • t
  • e
Aquatic ecosystems
Aquatic ecosystems – general and freshwater components
  • Acoustic ecology
  • Adaptation
  • Agent-based models
  • Algal bloom
  • Anoxic waters
  • Aquatic animals (Insects
  • Mammals)
  • Aquatic plants
  • Aquatic science
  • Benthos
  • Biodiversity research
  • Bioluminescence
  • Biomass
  • Biomonitoring
  • Cascade effect
  • Colored dissolved organic matter
  • Camouflage and mimicry
  • Dead zone
  • Ecohydrology
  • Ecosystems
  • Eutrophication
  • Fisheries science
  • Food chain
  • Food web
  • GIS and aquatic science
  • Hydrobiology
  • Hypoxia
  • Isotope analysis
  • Macrobenthos
  • Meiobenthos
  • Microbial ecology
  • Microbial food web
  • Microbial loop
  • Nekton
  • Neuston
  • Particle
  • Pelagic zone
  • Photic zone
  • Phytoplankton
  • Plankton
  • Pleuston
  • Predation
  • Productivity
  • Ramsar Convention
  • Respiration
  • Schooling
  • Sediment trap
  • Siltation
  • Spawning
  • Substrate
  • Thermal pollution
  • Toxicology
  • Trophic level
  • Water column
  • Zooplankton
  • More…
  • Biology
  • Biomes
  • Ecosystems
    • freshwater
    • lake
    • river
  • Fish
  • Hyporheic zone
  • Limnology
  • Lake stratification
  • Macrophyte
  • Pond
    • Fish pond
  • Rheotaxis
  • Stream bed
  • Stream pool
  • Trophic state index
  • Upland and lowland
  • Water garden
  • Wetland
    • brackish marsh
    • freshwater marsh
    • swamp
    • bog
    • fen
  • Environmental quality
  • More…
  • Freshwater (List)
  • Marine (List)
  • The Everglades
  • Maharashtra
  • The North Pacific Subtropical Gyre
  • The San Francisco Estuary
Aquatic ecosystems – marine components
  • Marine biology
  • Marine chemistry
  • Deep scattering layer
  • Diel vertical migration
  • Ecosystems
    • large marine
    • marine)
  • f-ratio
  • Food web
  • Iron fertilization
  • Marine snow
  • Ocean nourishment
  • Oceanic physical-biological process
  • Primary production
  • Ocean turbidity
  • Photophore
  • Thorson’s rule
  • Upwelling
  • Viral shunt
  • Whale fall
  • More…
  • Bacteriophages
  • Census
  • Fish
    • coastal
    • coral reef
    • deep sea
    • demersal
    • pelagic
  • Deep sea communities
  • Deep sea creature
  • Deep-water coral
  • Invertebrates
  • Larvae
  • Mammals
  • Marine life
  • Microorganisms
  • Paradox of the plankton
  • Prokaryotes
  • Protists
  • Reptiles
  • Seabirds
  • Seashore wildlife
  • Vertebrates
  • Viruses
  • Wild fisheries
  • Coastal habitats
  • Coastal biogeomorphology
  • Bay mud
  • Cold seeps
  • Coral reefs
  • Davidson Seamount
  • Estuaries
  • Intertidal ecology
  • Intertidal wetlands
  • Kelp forests
  • Hydrothermal vents
  • Lagoons
  • Mangroves
  • Marine biomes
  • Mudflats
  • Oyster reefs
  • Rocky shores
  • Salt marshes
  • Salt pannes and pools
  • Seagrass meadows
  • Sponge grounds
  • Sponge reefs
  • Tide pools
  • Coral bleaching
  • Ecological values of mangroves
  • Fisheries and climate change
  • Human impact on marine life
  • Marine conservation
  • Marine conservation activism
  • Marine pollution
  • Marine Protected Area
icon Oceans portal
  • v
  • t
  • e
Groups of organisms in aquatic ecosystems
  • Benthos
    • Macrobenthos
    • Meiobenthos
  • Herpon
  • Nekton
  • Neuston
  • Pechton / Pecton / Pekton
  • Plankton
  • Pleuston
  • Plocon
  • Seston
  • Tripton
  • v
  • t
  • e
Ecology: Modelling ecosystems: Trophic components
  • Abiotic component
  • Abiotic stress
  • Behaviour
  • Biogeochemical cycle
  • Biomass
  • Biotic component
  • Biotic stress
  • Carrying capacity
  • Competition
  • Ecosystem
  • Ecosystem ecology
  • Ecosystem model
  • Keystone species
  • List of feeding behaviours
  • Metabolic theory of ecology
  • Productivity
  • Resource
  • Autotrophs
  • Chemosynthesis
  • Chemotrophs
  • Foundation species
  • Mixotrophs
  • Myco-heterotrophy
  • Mycotroph
  • Organotrophs
  • Photoheterotrophs
  • Photosynthesis
  • Photosynthetic efficiency
  • Phototrophs
  • Primary nutritional groups
  • Primary production
  • Apex predator
  • Bacterivore
  • Carnivores
  • Chemoorganotroph
  • Foraging
  • Generalist and specialist species
  • Intraguild predation
  • Herbivores
  • Heterotroph
  • Heterotrophic nutrition
  • Insectivore
  • Mesopredators
  • Mesopredator release hypothesis
  • Omnivores
  • Optimal foraging theory
  • Planktivore
  • Predation
  • Prey switching
  • Chemoorganoheterotrophy
  • Decomposition
  • Detritivores
  • Detritus
  • Archaea
  • Bacteriophage
  • Lithoautotroph
  • Lithotrophy
  • Marine microorganisms
  • Microbial cooperation
  • Microbial ecology
  • Microbial food web
  • Microbial intelligence
  • Microbial loop
  • Microbial mat
  • Microbial metabolism
  • Phage ecology
Food webs
  • Biomagnification
  • Ecological efficiency
  • Ecological pyramid
  • Energy flow
  • Food chain
  • Trophic level
Example webs
  • Lakes
  • Rivers
  • Soil
  • Tritrophic interactions in plant defense
  • Marine food webs
    • cold seeps
    • hydrothermal vents
    • intertidal
    • kelp forests
    • North Pacific Gyre
    • San Francisco Estuary
    • tide pool
  • Ascendency
  • Bioaccumulation
  • Cascade effect
  • Climax community
  • Competitive exclusion principle
  • Consumer–resource interactions
  • Copiotrophs
  • Dominance
  • Ecological network
  • Ecological succession
  • Energy quality
  • Energy Systems Language
  • f-ratio
  • Feed conversion ratio
  • Feeding frenzy
  • Mesotrophic soil
  • Nutrient cycle
  • Oligotroph
  • Paradox of the plankton
  • Trophic cascade
  • Trophic mutualism
  • Trophic state index
  • Animal coloration
  • Anti-predator adaptations
  • Camouflage
  • Deimatic behaviour
  • Herbivore adaptations to plant defense
  • Mimicry
  • Plant defense against herbivory
  • Predator avoidance in schooling fish
  • v
  • t
  • e
Ecology: Modelling ecosystems: Other components
  • Abundance
  • Allee effect
  • Depensation
  • Ecological yield
  • Effective population size
  • Intraspecific competition
  • Logistic function
  • Malthusian growth model
  • Maximum sustainable yield
  • Overpopulation
  • Overexploitation
  • Population cycle
  • Population dynamics
  • Population modeling
  • Population size
  • Predator–prey (Lotka–Volterra) equations
  • Recruitment
  • Small population size
  • Stability
    • Resilience
    • Resistance
  • Biodiversity
  • Density-dependent inhibition
  • Ecological effects of biodiversity
  • Ecological extinction
  • Endemic species
  • Flagship species
  • Gradient analysis
  • Indicator species
  • Introduced species
  • Invasive species
  • Latitudinal gradients in species diversity
  • Minimum viable population
  • Neutral theory
  • Occupancy–abundance relationship
  • Population viability analysis
  • Priority effect
  • Rapoport’s rule
  • Relative abundance distribution
  • Relative species abundance
  • Species diversity
  • Species homogeneity
  • Species richness
  • Species distribution
  • Species–area curve
  • Umbrella species
  • Antibiosis
  • Biological interaction
  • Commensalism
  • Community ecology
  • Ecological facilitation
  • Interspecific competition
  • Mutualism
  • Parasitism
  • Storage effect
  • Symbiosis
  • Biogeography
  • Cross-boundary subsidy
  • Ecocline
  • Ecotone
  • Ecotype
  • Disturbance
  • Edge effects
  • Foster’s rule
  • Habitat fragmentation
  • Ideal free distribution
  • Intermediate disturbance hypothesis
  • Insular biogeography
  • Land change modeling
  • Landscape ecology
  • Landscape epidemiology
  • Landscape limnology
  • Metapopulation
  • Patch dynamics
  • r/K selection theory
  • Resource selection function
  • Source–sink dynamics
  • Ecological niche
  • Ecological trap
  • Ecosystem engineer
  • Environmental niche modelling
  • Guild
  • Habitat
    • marine habitats
  • Limiting similarity
  • Niche apportionment models
  • Niche construction
  • Niche differentiation
  • Ontogenetic niche shift
  • Assembly rules
  • Bateman’s principle
  • Bioluminescence
  • Ecological collapse
  • Ecological debt
  • Ecological deficit
  • Ecological energetics
  • Ecological indicator
  • Ecological threshold
  • Ecosystem diversity
  • Emergence
  • Extinction debt
  • Kleiber’s law
  • Liebig’s law of the minimum
  • Marginal value theorem
  • Thorson’s rule
  • Xerosere
  • Allometry
  • Alternative stable state
  • Balance of nature
  • Biological data visualization
  • Ecocline
  • Ecological economics
  • Ecological footprint
  • Ecological forecasting
  • Ecological humanities
  • Ecological stoichiometry
  • Ecopath
  • Ecosystem based fisheries
  • Endolith
  • Evolutionary ecology
  • Functional ecology
  • Industrial ecology
  • Macroecology
  • Microecosystem
  • Natural environment
  • Regime shift
  • Sexecology
  • Systems ecology
  • Urban ecology
  • Theoretical ecology
List of ecology topics

Retrieved from “”